Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Journal of the American College of Cardiology (JACC) ; 81:2575-2575, 2023.
Article in English | CINAHL | ID: covidwho-2264950
2.
Current Proteomics ; 19(1):51-64, 2022.
Article in English | ProQuest Central | ID: covidwho-1731669

ABSTRACT

Background: : The global outbreak of the 2019 novel Coronavirus disease (COVID-19) caused by infection with the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), which appeared in China at the end of 2019, signifies a major public health issue at the current time. Objective: The objective of the present study is to characterize the physicochemical properties of the SARS-CoV-2 proteins at a residues level, and to generate a “bioinformatics fingerprint” in the form of a “PIM profile” created for each sequence utilizing the Polarity Index Method (PIM), suitable for the identification of these proteins. Methods: Two different bioinformatics approaches were used to analyze sequence characteristics of these proteins at the residues level, an in-house bioinformatics system PIM, and a set of the commonly used algorithms for the prediction of protein intrinsic disorder predisposition, such as PONDR VLXT, PONDR VL3, PONDR VSL2, PONDR FIT, IUPred_short and IUPred_long. The PIM profile was generated for four SARS-CoV-2 structural proteins and compared with the corresponding profiles of the SARS-CoV-2 non-structural proteins, SARS-CoV-2 putative proteins, SARS-- CoV proteins, MERS-CoV proteins, sets of bacterial, fungal, and viral proteins, cell-penetrating peptides, and a set of intrinsically disordered proteins. We also searched for the UniProt proteins with PIM profiles similar to those of SARS-CoV-2 structural, non-structural, and putative proteins. Results: We show that SARS-CoV-2 structural, non-structural, and putative proteins are characterized by a unique PIM profile. A total of 1736 proteins were identified from the 562,253 “reviewed” proteins from the UniProt database, whose PIM profile was similar to that of the SARS-CoV-2 structural, non-structural, and putative proteins. Conclusion: The PIM profile represents an important characteristic that might be useful for the identification of proteins similar to SARS-CoV-2 proteins.

3.
Int J Environ Res Public Health ; 18(3)2021 02 01.
Article in English | MEDLINE | ID: covidwho-1067747

ABSTRACT

Spatialized racial injustices drive morbidity and mortality inequalities. While many factors contribute to environmental injustices, Pb is particularly insidious, and is associated with cardio-vascular, kidney, and immune dysfunctions and is a leading cause of premature death worldwide. Here, we present a revised analysis from the New Orleans dataset of soil lead (SPb) and children's blood Pb (BPb), which was systematically assembled for 2000-2005 and 2011-2016. We show the spatial-temporal inequities in SPb, children's BPb, racial composition, and household income in New Orleans. Comparing medians for the inner city with outlying areas, soil Pb is 7.5 or 9.3 times greater, children's blood Pb is ~2 times higher, and household income is lower. Between 2000-2005 and 2011-2016, a BPb decline occurred. Long-standing environmental and socioeconomic Pb exposure injustices have positioned Black populations at extreme risk of adverse health consequences. Given the overlapping health outcomes of Pb exposure with co-morbidities for conditions such as COVID-19, we suggest that further investigation be conducted on Pb exposure and pandemic-related mortality rates, particularly among Black populations. Mapping and remediating invisible environmental Pb provides a path forward for preventing future populations from developing a myriad of Pb-related health issues.


Subject(s)
Lead/analysis , Lead/blood , Soil Pollutants/analysis , Soil Pollutants/blood , Black or African American , Child , Environmental Exposure , Health Status Disparities , Humans , New Orleans , Socioeconomic Factors , Soil , Spatio-Temporal Analysis
SELECTION OF CITATIONS
SEARCH DETAIL